Apr 20, 2024  
2013-2014 Undergraduate Catalog 
    
2013-2014 Undergraduate Catalog [ARCHIVED CATALOG]

Nuclear Engineering


Return to {$returnto_text} Return to: College of Engineering

www.engr.utk.edu/nuclear

J. Wesley Hines, Head

Professors
Fontana, M.H. (Research), PhD, PE - Purdue
Ganapol, B.D. (Research), PhD - California (Berkeley)
Grossbeck, M.L. (Research), PhD - Illinois
Hall, H.L. (Governor’s Chair Professor), PhD - California (Berkeley)
Hines, J.W., (Postelle Professor), MBA, PhD - Ohio State
Lillie, R.A. (Research), PhD - Tennessee
Mihalczo, J.T. (Research), PhD - Tennessee
Miller, L.F., PhD, PE - Texas A&M
Mynatt, F.R. (Research), PhD - Tennessee
Ruggles, A.E., PhD - Rensselaer Polytechnic
Townsend, L.W. (Chancellor’s Professor, Robert M. Condra Professor), PhD - Idaho
Upadhyaya, B.R., PhD, PE - California (San Diego)
Wirth, B.D. (Governor’s Chair Professor), PhD - California (Santa Barbara)

Associate Professors
Maldonado, G.I., PhD - North Carolina State
Pevey, R.E., MBA (Emory), PhD, PE - Tennessee

Assistant Professors
Gribok, A.V., (Research), PhD - IPPE (Russia)
Hayward, J.P., PhD - Michigan
Heilbronn, L.H., PhD - Michigan State
Lukosi, E., PhD - Missouri (Columbia)
Stuknik, S., PhD - North Carolina State
Stephan, A.C. (Research), PhD - Tennessee

Research Associate Professor
Stainback, J., PhD - Tennessee

Joint Faculty (UTK-ORNL)
Besmann, T.M., PhD - Pennsylvania State
Cook, D.H., PhD - Tennessee
Gehin, J.C., PhD - Massachusetts Institute of Technology
Grove, R.E., PhD - Michigan
Jodoin, V.J., PhD, PE - Air Force Institute of Technology
Maingi, R., PhD - North Carolina State

Adjunct Faculty
Bogard, J.G., PhD - Texas (Austin)
DeHart, M.D., PhD - Texas A&M
Icenhour, A.S., PhD - Tennessee
Iverson, E.B., PhD - Massachusetts Institute of Technology
Nichols, T.L., MD - Tennessee
Ramsey, C.R., PhD - Tennessee
Williams, M.L., PhD - Tennessee

Emeriti Faculty
Dodds, H.L., PhD, PE - Tennessee
Groer, P.G., PhD - Vienna (Austria)
Uhrig, R.E. (Distinguished Professor), PhD, PE - Iowa State
 

Nuclear engineering is the engineering discipline that focuses on the application of nuclear and atomic processes for the benefit of mankind and the environment. Radiological engineering is a specialty of nuclear engineering that addresses biological applications such as radiation safety (health physics). Some examples of nuclear and radiological engineering are production of electric power with essentially no air pollution, production of radioisotopes for medical and industrial uses, and development of radiation based methods for the diagnosis and treatment of cancer.

The mission of the Nuclear Engineering Department is to

  • Produce high quality nuclear and radiological engineering graduates from undergraduate through the doctoral level in order to help meet the manpower needs of our state, region, nation, and the international community.
  • Conduct nuclear and radiological engineering related research to help meet the needs of society.
  • Perform service for industry, government, professional organizations, and the public in areas related to nuclear and radiological engineering.

The program for the Bachelor of Science in Nuclear Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org, which is described earlier in this catalog. The educational objectives of the Bachelor of Science program are to

  • Apply fundamental knowledge in mathematics, computer science, the basic sciences, and the engineering sciences to address opportunities in nuclear and radiological engineering,
  • Apply their design and analysis experience in nuclear and radiological engineering practice that shall include environmental, societal, safety, and economic considerations,
  • Use skills in oral and written communication, teamwork, laboratory work, problem solving, and the use of modern engineering tools to work productively in a contemporary and global environment,
  • Use a diverse general education in the humanities, ethics, and social sciences that complements their technological education in order to understand and appreciate the importance of each in society and in personal development, and
  • Engage in life-long learning for professional and personal growth.

Students majoring in nuclear engineering take courses in the basic sciences, engineering fundamentals, mathematics, computer science, humanities, and special areas of nuclear engineering including nuclear system design and safety; radiation transport and shielding; heat transfer and fluid flow; instrumentation and controls; fuel cycle and waste management; and health physics. Nuclear engineering students may concentrate in radiological engineering by substitution of two courses. The radiological engineering concentration also satisfies most of the requirements of pre-med, pre-vet, and pre-dentistry programs.

uTrack Requirements (for first-year students)

Universal Tracking (uTrack) is an academic monitoring system designed to help students stay on track for timely graduation. In order to remain on track, students must complete the minimum requirements for each tracking semester known as milestones. Milestones may include successful completion of specified courses and/or attainment of a minimum GPA. uTrack requirements only affect first-time, first-year, full-time, degree-seeking students entering Fall 2013.

PROGRESSION POLICIES AND REQUIREMENTS

Progression

The first two years of the curriculum are considered to be lower-division and the two remaining years upper division. Students must apply for progression to departmental upper division courses, which depends on academic performance. Factors considered include overall grade point average, performance in selected lower division courses and evidence of orderly progression through the prescribed curriculum.

Full Status

A lower-division student may apply for progression to upper division after completing CHEM 120 * or CHEM 128 *, CHEM 130 * or CHEM 138 *; MATH 141 * or MATH 147 *, MATH 142 * or MATH 148 *, MATH 231 ; EF 151 * or EF 157 *, EF 152 * or EF 158 *; NE 200 , and PHYS 231 *, with a grade of C or better in each, and an overall GPA of at least 2.5.

Provisional Status

Students who have completed CHEM 120 * or CHEM 128 *, CHEM 130 * or CHEM 138 *; MATH 141 * or MATH 147 *, MATH 142 * or MATH 148 *, MATH 231 ; EF 151 * or EF 157 *, EF 152 * or EF 158 *, and PHYS 231 * with a grade of C or better and have an overall GPA between 2.0 and 2.5 may apply for provisional status. The granting of provisional status is based on the availability of space in departmental programs after full status students have been accommodated. Provisional status students are required to demonstrate their ability to perform satisfactorily in upper-division by attaining a minimum GPA of 2.5 in the first 9 hours of 300-level required nuclear engineering courses. Award of upper-division full status is dependent upon this performance. Students who have not progressed to upper-division will be dropped from departmental courses.

Five-Year BS/MS Program

The department offers a 5-year BS-MS program with a BS (major in nuclear engineering) and an MS (major in nuclear engineering) for qualified students. The primary component of the program is that qualified students may take up to 6 hours of approved graduate courses for their senior undergraduate electives and have them count toward both their bachelor’s and master’s degrees at the University of Tennessee. This program is designed for students attending the University of Tennessee for their Master of Science degree because other universities may not accept these courses for graduate credit since they were used to satisfy requirements for the Bachelor of Science degree. Significant components of the program are:

  • Students must have an overall GPA of 3.4 in required course work. Conditional admission to the 5-year program may be granted after completion of 63 hours of required course work, while full admission may be granted after the completion of 93 hours of required course work with a minimum overall GPA of 3.4.

  • Students must at least be conditionally admitted to the program prior to taking graduate courses for both their bachelor’s and master’s degrees. All courses taken for graduate credit must be approved by the director of graduate studies. Students admitted to the program must request permission from the Graduate School to take approved courses for graduate credit.

  • Students admitted to the program must also follow the normal procedure for admission to the Graduate School. Admission of students into this program must be approved by the department and the Graduate School. Students will not be eligible for assistantships until they are enrolled as graduate-level students in the Graduate School.

 

Return to {$returnto_text} Return to: College of Engineering